If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6x^2+14x+7=0
a = -6; b = 14; c = +7;
Δ = b2-4ac
Δ = 142-4·(-6)·7
Δ = 364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{364}=\sqrt{4*91}=\sqrt{4}*\sqrt{91}=2\sqrt{91}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{91}}{2*-6}=\frac{-14-2\sqrt{91}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{91}}{2*-6}=\frac{-14+2\sqrt{91}}{-12} $
| 15x-7-3x-8=83 | | y=-1/2(33)+4 | | -10x/1.5=-5 | | p/6+5=10 | | 3x-9+x=5-6(x-2) | | X^2+3x+7=O | | (2x-5)+x=113 | | 8v+12=20 | | 34=-2(m+7)+m | | m=0.25 | | 6(x+2)-5=9 | | -2(3y-7=56 | | 6h −1=−-3 | | 2(r+1)=18 | | 3(x+10)=2(2x=16) | | -2(3y-7)=40 | | 16=y/3+4 | | y/7+1=10 | | 2x^2=11x-10 | | 12.1+y/6=-7.1 | | 7x,-2=6x+3 | | 3/7x=10 | | 6w–5=-23 | | 7(y-9)=y+3 | | 5m-1=7m+3 | | 25x^2+50x-6000=0 | | -1=7+(2x-14)^3 | | 2x-8(-x-7)=6 | | 9x+9=21 | | (x-3)/4+(2(x-4)/5-1/3=0 | | .00045/y=900 | | 2x+7=8+3x |